SOM Clustering to Promote Interoperability of Directory Metadata: A Grid-Enabled Genetic Algorithm Approach
نویسندگان
چکیده
Directories provide a general mechanism for describing resources and enabling information sharing within and across organizations. Directories must resolve differing structures and vocabularies in order to communicate effectively, and interoperability of the directories is becoming increasingly important. This study proposes an approach that integrates a genetic algorithm with a neural network based clustering algorithm Self-Organizing Maps (SOM) to systematically cluster directory metadata, highlight similar structures, recognize developing patterns of practice, and potentially promote homogeneity among the directories. The proposed approach utilizes the computing power of Grid infrastructure to improve system performance. The study also explores the feasibility of automating the SOM clustering process in a converging domain by incrementally building a stable SOM map with respect to an initial reference set. Empirical investigations were conducted on sets of Lightweight Directory Access Protocol (LDAP) directory metadata. The experimental results show that the proposed approach can effectively and efficiently cluster LDAP directory metadata at the level of domain experts and a stable SOM map can be created for a set of converging LDAP directory metadata.
منابع مشابه
Data Clustring Using A New CGA(Chaotic-Generic Algorithm) Approach
Clustering is the process of dividing a set of input data into a number of subgroups. The members of each subgroup are similar to each other but different from members of other subgroups. The genetic algorithm has enjoyed many applications in clustering data. One of these applications is the clustering of images. The problem with the earlier methods used in clustering images was in selecting in...
متن کاملData Clustring Using A New CGA(Chaotic-Generic Algorithm) Approach
Clustering is the process of dividing a set of input data into a number of subgroups. The members of each subgroup are similar to each other but different from members of other subgroups. The genetic algorithm has enjoyed many applications in clustering data. One of these applications is the clustering of images. The problem with the earlier methods used in clustering images was in selecting in...
متن کاملMulti-layer Clustering Topology Design in Densely Deployed Wireless Sensor Network using Evolutionary Algorithms
Due to the resource constraint and dynamic parameters, reducing energy consumption became the most important issues of wireless sensor networks topology design. All proposed hierarchy methods cluster a WSN in different cluster layers in one step of evolutionary algorithm usage with complicated parameters which may lead to reducing efficiency and performance. In fact, in WSNs topology, increasin...
متن کاملDeveloping A Fault Diagnosis Approach Based On Artificial Neural Network And Self Organization Map For Occurred ADSL Faults
Telecommunication companies have received a great deal of research attention, which have many advantages such as low cost, higher qualification, simple installation and maintenance, and high reliability. However, the using of technical maintenance approaches in Telecommunication companies could improve system reliability and users' satisfaction from Asymmetric digital subscriber line (ADSL) ser...
متن کاملTransient Analysis of the Single-Conductor Overhead Lines Connected to Grid-Grounded Arrester under Direct Lightning by Means of GA
In this paper, genetic algorithm-based approach for transient analysis of single transmission line connected to arrester is proposed. In this approach, the lightning channel striking the overhead line is first represented by a current source and this source is truncated by a finite set of frequency harmonies in time domain. Norton equivalent circuit viewed across arrester is then computed by me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. UCS
دوره 16 شماره
صفحات -
تاریخ انتشار 2010